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Abstract  
 
In this white paper we run  the AI workload, MLPerf Training v0.6, on the Red Hat® OpenShift® 
Container Platform with SUPERMICRO® hardware and compare it to the MLPerf Training v0.6  
results published by NVIDIA1  We present a Supermicro reference architecture for OpenShift 
with NVIDIA GPUs and describe how this AI infrastructure allows you to run and monitor MLPerf 
Training  v0.6 in containers based on Red Hat® Enterprise Linux®. To our knowledge, this is 
the first time Red Hat Enterprise Linux-based containers were created for MLPerf v0.6 and 
running on Supermicro Multi-GPU system and 100G network, as opposed to commonly used 
NVIDIA NGC containers and Nvidia DGX-1. In addition to excellent performance, we 
demonstrate how OpenShift provides easy access to high-performance machine learning model 
training when running on this SUPERMICRO reference architecture.   
 

Executive Summary 
 
AI Infrastructure is increasingly requiring higher performance computing.  Companies are 
creating and training ever more complex deep learning neural networks, or DNNs, in their data 
centers. These DNNs are getting a lot of attention because they can outperform humans at 
classifying images and can beat the world’s best Go player. Training DNNs is very compute-
intensive so it is worthwhile to reduce training times with hardware accelerators and software 
tuning.  Last year a group of researchers from industry and universities developed MLPerf, a 
suite of compute intensive AI benchmarks representing real world AI workloads, for measuring 
performance of AI Infrastructure.  In Supermicro’s Cloud Center of Excellence (CCoE) in San 
Jose, CA, we created a reference architecture running Red Hat OpenShift Container Platform 
software and ran the latest version of MLPerf Training to assess its performance relative to 
published results from NVIDIA.  
 
The Red Hat/Supermicro MLPerf Training v0.6 benchmark results closely match the NVIDIA 
DGX-1 closed division published results (within -6.13% to +2.29%; where negative means 
slower, and positive values are faster than the NVIDIA results).  This outcome demonstrates 
that containerization provides the benefit of software portability, improved collaboration, and 
data reproducibility without significantly affecting performance. 
 

 
 

 
1 NVIDIA MLPerf Training v0.6 Results, published July 2019; https://mlperf.org/training-results-0-6 
 

https://mlperf.org/press#mlperf-training-v0.6-results
https://mlperf.org/training-results-0-6
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Solution Reference Architecture  
The Supermicro Red Hat OpenShift Deep Learning solution is based on industry-leading GPU 
servers with the latest Intel® Xeon® processors, NVIDIA® Volta® GPUs, NVLink technology, 
making it an ultimate powerhouse for all your AI needs. By incorporating Supermicro’s BigTwin 
as fundamental building block for OpenShift with Supermicro’s GPU servers, this solution 
becomes one of the industry leading containerized solution for AI and Deep Learning. Partnered 
with NVIDIA, the reference architecture features the latest NVIDIA GPUs. Each compute node 
utilizes NVIDIA® Tesla® V100 GPUs for maximum parallel compute performance resulting in 
reduced training time for Deep Learning workloads. In addition, this solution presents a scale-
out architecture with 10G/25G/100G networking options which is scalable to fit future growth. 
 

 
 
 
Figure 1: Hardware components of the stack which ran the MLPerf Training v0.6 benchmark 
described in this white paper. 
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Solution Building Blocks 
 

• Supermicro BigTwin™ 
 

 Performance: Dual Socket P (LGA 3647) support 2nd Gen. Intel® Xeon® Scalable 
Processors, 24 DIMMs; up to 6TB 3DS ECC, DDR4-2933MHz† RDIMM/LRDIMM, 
Supports Intel® Optane™ DCPMM; 24 DIMMs; up to 6TB 3DS ECC DDR4-2933MHz 
RDIMM/LRDIMM, Supports Intel® Optane™ DCPMM. 

 
 Density: High density with up to 4 hot swappable nodes in a 2U form factor with flexible 

and robust IO options--1G, 10G, 25G, or 100G Ethernet or 100G InfiniBand, and up to 2 
additional low-profile PCI-E 3.0 x16 expansion slots per node.  

 
 Efficiency: Designed with power and cost efficiency in mind, the BigTwin™ reduces 

power consumption with shared cooling and power design, leveraging redundant 
2600W/2200W high efficiency (96%) power supplies. (Full redundancy based on 
configuration and application load) 
 
 

 
Figure 2: Supermicro BigTwin™: SYS-2029BT-HNC1R 

 
 

• Supermicro GPU Optimized SuperServer 
 

 High Performance and Low Latency: Dual Socket P (LGA 3647) support, 2nd Gen. 
Intel® Xeon® Scalable processors, 24 DIMMs; up to 6TB 3DS ECC DDR4-2933MHz† 
RDIMM/LRDIMM, Supports Intel® Optane™ DCPMM, 4 PCI-E 3.0 x16 (LP), GPU tray 
for GPU Direct RDMA, 2 PCI-E 3.0 x16 (LP, CPU tray). 
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 GPU Optimization: Multi-GPU optimized thermal designs for highest performance and 
reliability, advanced GPU interconnect options for best efficiency and lowest latency, 
leading GPU architectures including NVIDIA® with NVLink™ and NVSwitch™. Highest 
parallel peak performance with up to 8 Tesla V100 GPUs. Best in class GPU-to-GPU 
bandwidth with a maximum speed of 300GB/s (NVLINK).  
 

 Storage and Efficiency: High performance storage options with - 16 Hot-swap 2.5" 
SAS/SATA drives (Optional 8x NVMe drives supported), 2 NVMe based M.2 SSD. 
Designed for power efficiency and optimized to prevent overheating due to GPU 
workload- 8x 92mm cooling fans, 8 x 2200W Redundant (2+2) Power Supplies; Titanium 
Level (96%+). 

 
Figure 3: Supermicro GPU Optimized SuperServer: SYS-4029GP-TVRT 

 
• NVIDIA Tesla® V100 GPU 

 
 New Streaming Multiprocessor (SM) Architecture: New Tensor Cores designed 

specifically for deep learning deliver up to 12x higher peak TFLOPS for training and 6x 
higher peak TFLOPS for inference.  

 
 Second-Generation NVIDIA 

NVLink™:   NVLink provides 
significantly more performance for 
both GPU-to-GPU and GPU-to-CPU 
system configurations compared to 
using PCIe interconnects. High-
speed interconnect delivers higher 
bandwidth, more links, and improved 
scalability for multi-GPU and multi-
GPU/CPU system configurations.  

 
 

 
Figure 4: Hybrid Cube Mesh NVLink Topology 

Source: NVIDIA website  
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 Volta Optimized Software: New versions of deep learning frameworks such as Caffe2, 

MXNet, CNTK, TensorFlow, and others harness the performance of Volta to deliver 
dramatically faster training times and higher multi-node training performance. Volta-
optimized versions of GPU accelerated libraries such as cuDNN, cuBLAS, and 
TensorRT leverage the new features of the Volta GV100 architecture to deliver higher 
performance for both deep learning inference and High Performance Computing (HPC) 
applications. The NVIDIA CUDA Toolkit version 9.0 includes new APIs and support for 
Volta features to provide even easier programmability.  
 

 
 

Figure 5: NVIDIA® Tesla® V100 SXM2 GPU 
 
 
 
 
 
 
 
Table 1: Tested Hardware Configuration 
 
   Supermicro BigTwin (OpenShift Master Nodes) 

  Part Number Description Capacity 

Server SYS-2029BT-HNC1R 1 x BigTwin, 2U 4 nodes, performance   

CPU P4X-CLX6248-SRF90 2 x CLX-SRV 6248 20C 2.5 GHz 27.5M 80T 

Memory MEM-DR432L-SL03-ER26 4 x 32GB DDR4 2666MHz 128 GB 

SSD HDS-I2T2-
SSDSC2KB480G7 

2 x Intel S4500 480GB SSD 480 GB 

NVMe HDS-IUN2-
SSDPE2KE020T7 

3 x Intel P4600 2TB NVMe 6TB 

AOC AOC-S25G-m2S 1 x AOC Mellanox, 2x SFP+ 25G ports  2 

AOC-MH25G-m2S2TM 1 x SIOM, Mellanox, 2x RJ45 10G plus 2x SFP+ 25G ports   
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   Supermicro BigTwin (OpenShift Infra Nodes) 

  Part Number Description Capacity 

CPU P4X-CLX6248-SRF90 2 x CLX-SRV 6248 20C 2.5 GHz 27.5M 80T 

Memory MEM-DR432L-SL03-ER26 16 x 32GB DDR4 2666MHz 512 GB 

SSD HDS-2TV-
MZ7LM960HMJP005 

4 x 960 GB 2.5" SATA3 SSD 1.92 TB 

AOC AOC-S25G-m2S 1 x AOC Mellanox, 2x SFP+ 25G ports   

 AOC-MH25G-m2S2TM 1 x SIOM, Mellanox, 2x RJ45 10G plus 2x SFP+ 25G ports   

    Supermicro Ultra Server (OpenShift Bastion/ Load Balancer Node) 

Server 1029-TRT 1 x Ultra, 1U general server   

CPU P4X-SKL5118-SR3GF 2 x Intel SkyLake 5118 
12 cores, 2.3-3.2GHz  

48T 

Memory MEM-DR432L-SL02-ER26 4 x 32GB DDR4 2666MHz 128 GB 

HDD  1 x 960 GB 2.5" SATA3 SSD 960GB 

AOC AOC-S25G-m2S 2 x AOC Mellanox, 2x SFP+ 25G ports   

       
   Supermicro GPU Server (OpenShift Compute Node) 
 

Server SYS-4029GP-TVRT 1 x 4U GPU server, Up to 8 GPUs - 

CPU P4X-CLX6248-SRF90 2 x CLX-SRV 6248 20C 2.5 GHz 27.5M 80T 

Memory MEM-DR432L-SL01-ER29 24 x 32GB DDR4 2933MHz 768 GB 

GPU - 8 x NVIDIA Tesla V100 SXM2 32GB - 

HDD INTEL SSDSC2KG038T8 1 x Solid State Drives - SSD Intel SSD D3-S4610 Series 
(3.8TB, 2.5in SATA 6Gb/s, 3D2, TLC) 

3.8TB 

AOC AOC-S25G-m2S 2 x AOC Mellanox, 2x SFP+ 25G ports - 
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Table 2: Hardware Node Setup  
 

Hardware Description  Functions Qty 

Supermicro BigTwin  
(SYS-2029BT-HNC1R) 

3 Master, 3 Infra, 2 App  2 

Supermicro Ultra Server 
(SYS-1029U-E1CRT) 

1 Bastion/ Load Balancer 1 

Supermicro GPU Server 
(SYS-4029GP-TVRT) 

1 App (GPU)   1 

Supermicro 10G Ethernet Switch 
(SSE-X3348TR) 

Management, 10G 
Interconnection 

1 

Supermicro 100G SDN Super Switch 
(SSE-C3632S) 

100G Interconnection 1 

 
 
 

 

 
 
 

Figure 6: Network Diagram 
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Benchmark Suite 
 
MLPerf Training is a broad benchmark suite for measuring the performance of AI and machine 
learning software frameworks, ML hardware platforms and ML cloud platforms.  A consortium of 
AI community stakeholders from industry such as Facebook and Google, and university 
researchers from Harvard, UC Berkeley, Stanford, University of Illinois, University of Michigan 
and others, created the MLPerf benchmark suite.  The goal of MLPerf Training is to give 
developers a way to evaluate reference architectures and the wide range of advancing ML 
frameworks. In July 2019 the MLPerf effort published its results for version 0.6 of the benchmark 
suite.  The MLPerf Training benchmarking suite measures the time it takes to train machine 
learning models to a target level of quality.  The MLPerf Training v0.6 benchmarks we ran on 
Red Hat OpenShift in the Supermicro lab perform human language translation and object 
detection.  These models are deep neural networks trained in an iterative learning process by 
passing training data through them to adjust model weights and “learn” to translate language or 
detect objects in images.  
 
Model training is the most computationally intensive step of the machine learning workflow.  
Because it can take days or weeks to train a model, it is important to reduce training time so that 
data scientists can innovate faster.  Improvements in MLPerf Training results between v0.5 and 
v0.6 demonstrate how quickly AI infrastructure is improving.  Model training is shown in Figure 7 
in the context of the entire machine learning workflow. 

 
 

  
 

 

 
 
 
 

Figure 7: Machine Learning Workflow showing model training component. 
 

Data 
Ingestion 

Data 
Transformation 

Model 
Training 

Model 
Serving 

Model evaluation 
& validation 

Test 
Data 

Train Test Loop 

Model Feedback Loop 

https://mlperf.org/
https://mlperf.org/training-results-0-5/
https://mlperf.org/training-results-0-6/
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Table 3: MLPerf Training v0.6 benchmarks used in our experiment. 
 

Benchmark Object Detection 
(heavy weight)  

Object Detection 
(light weight) 

Translation 
(Recurrent) 

Translation 
(Non-Recurrent) 

Data COCO 2017 COCO 2017 WMT English-
German 

WMT 
 English-German 

Data Size 21GB 21GB 56GB 56GB 

Model Mask R-CNN SSD-ResNet34 GNMT Transformer 

Framework PyTorch PyTorch PyTorch PyTorch 

 
 
 

Benchmark Results 
Our MLPerf Training results (Figure 7), demonstrate that running RHEL-based containers on 
Red Hat OpenShift Container Platform software and Supermicro hardware very closely matches 
the performance of the NVIDIA published results (Table 2). Nvidia’s published results are the 
bar we are striving to meet.  Our timings are very similar to the NVIDIA published results; within 
-6.13% to +2.29%, where negative means slower, and positive values are faster than the 
NVIDIA results.   For the longer running Mask R-CNN model our results were faster, while in the 
three shorter benchmarks our results were slightly slower.  Overall, this shows that 
containerizing the benchmarks did not add significant overhead. One explanation for our 
comparable results is that containers add very little overhead, because essentially a container is 
just a process restricted to a private root filesystem and process namespace.   Other possible 
reasons for the differences include slightly different software versions or hardware differences.  
For this paper we performed four of the six MLPerf Training v0.6 benchmarks.  However, we did 
not have time to run the full suite of experiments needed to formally submit these results to the 
MLPerf consortium, hence our results are unverified by the MLPerf consortium.  Our logs are 
available at our GitLab site (https://gitlab.com/opendatahub/gpu-performance-benchmarks) and 
we have provided our best timings in comparison to Nvidia’s formal closed submission.  Our 
results demonstrate we can match bare-metal MLPerf Training v0.6 timings with containerized 
MLPerf Training v0.6 on OpenShift when running on Supermicro hardware, and that 
containerization and the OpenShift Kubernetes platform do not add significant overhead.  
 

https://gitlab.com/opendatahub/gpu-performance-benchmarks
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We quantify the deep learning training performance of Red Hat Enterprise Linux-based 
containerized MLPerf Training v0.6 benchmarking suite running on Supermicro Super Servers 
with NVIDIA V100 GPUs, and compare these results with NVIDIA published DGX-1 MLPerf 
Training v0.6 results.  MLPerf Training workloads are performance-sensitive and GPUs are 
particularly effective at running them efficiently by exploiting the parallelism inherent in their 
neural network models. In our lab we ran containerized MLPerf Training v0.6 to demonstrate the 
efficiency of training real-world AI models on OpenShift with Supermicro GPU optimized Super 
Servers and BigTwin and Ultra server optimized for Red Hat OpenShift.  We demonstrate that 
model training with Red Hat Enterprise Linux-based containers runs as efficiently on OpenShift 
and Supermicro hardware as NVIDIA published MLPerf Training v0.6 NGC container results.  In 
Figure 8, we show NVIDIA timeseries metrics displayed in Grafana dashboards for easy 
understanding of performance data and identification of bottlenecks. 
 
The advantage of containerizing these models is that it provides software portability, improved 
collaboration, and data reproducibility without significantly affecting performance.   Using Red 
Hat Enterprise Linux containers to run AI/ML applications hides the plumbing from the user and 
allows them to concentrate on data science so they can innovate faster.  AI models can be 
difficult for non-experts to install and train due to many dependencies on specific versions of 
libraries and compilers.  Additionally, maintaining multiple runtime environments allowing 
models with different dependencies to run on the same cluster is a burden for the cluster 
administrator. Containerizing these models helps overcome these challenges.  
  

https://www.supermicro.com/en/products/GPU
https://www.supermicro.com/en/products/GPU
https://www.supermicro.com/en/products/bigtwin
https://www.supermicro.com/en/products/ultra
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Figure 8:  Benchmark results showing that MLPerf v0.6 on OpenShift was faster than the 

NVIDIA published timing for Mask R-CNN and only .05 to 6.13% slower for SDD-
ResNet34, GMNT and Transformer.2  

 
  

 
2 Results not verified by MLPerf Consortium 
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Table 4: MLPerf Training v0.6 Results 

 
              Source: https://mlperf.org/training-results-0-6 
 
 

Benchmark Hardware/Software Stack Details  
 
This section provides background on similarities and differences between the Supermicro setup 
and the NVIDIA setup against which we are comparing our results.  
 
The reference architecture in the Supermicro lab and the NVIDIA System lab are compared in 
Table 3.  
 
  

https://mlperf.org/training-results-0-6
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Table 5: Hardware and Software stack details. 
 

 Supermicro System NVIDIA System (published) 

GPUs - memory 8 V100s - 32GB  DGX-1 (8 V100s) - 32GB  

Container base layer RHEL-based containers Ubuntu-based containers 

Container orchestration OpenShift 3.11 NA 

Operating System RHEL 7.6 Ubuntu 18.04 

Framework  PyTorch NVIDIA Release 
19.05 PyTorch NVIDIA Release 19.05 

CUDA and Cuda driver Cuda 10.1.168,  
Cuda driver 418.67 

Cuda 10.1.163,  
Cuda driver 418.67 

CUDNN CUDNN 7.5.0 CUDNN 7.6.0 

NCCL NCCL 2.3.7 NCCL 2.4.6 

MLPerf Training v0.6 v0.6 

Prometheus Prometheus 2.12 NA 

Grafana  Grafana 6.3 NA 

 
 

 
 
 

Preparing OpenShift for GPU workloads 
 
The procedures to make containerized GPU workloads possible in OpenShift 3.11 are shown in 
the Appendix.  These steps must be applied after you install Openshift 3.11 and before you run 
the containerized benchmarks in this experiment. 
 
GPU-accelerated model training example 
 
We containerized each of the MLPerf Training v0.6 benchmarks to demonstrate the benefits of 
running ML applications in containers on OpenShift and to show the speed of the Supermicro 
reference architecture.  This section describes the procedure used to containerize and deploy 
the MLPerf Training benchmarks on OpenShift. 
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Steps 1 through 4 of this procedure builds the container image and deploys it on a GPU-
enabled node in OpenShift: 
 

1. Create a dockerfile for the model with the mlcc tool from Red Hat.  
We add statements to the dockerfile to build NVIDIA Pytorch from source and 
add a command to run each MLPerf Training benchmark script.    
The docker files we used in this experiment are available here: 
https://gitlab.com/opendatahub/gpu-performance-benchmarks 
 

2. Create a container image for each benchmark with the podman tool and the 
dockerfile created in the previous step.  For example, 
to create the container image for benchmark Mask-R-CNN, run the following 
command with the dockerfile (maskrcnn_dockerfile) from gitlab link in step 1.   
 
# podman build -f maskrcnn_dockerfile -t rhel_maskrcnn_smc 

 
 

3. Push the image to Quay.io (note: you will use your own pathname for quay.io). 
 
# podman push quay.io/dfeddema/rhel_maskrcnn_smc 

 
4. Deploy a pod for the MLPerf Training benchmark which requires GPUs.  

 
# oc create -f maskrcnn.yaml 

 
 
  Figure 9 shows the yaml to deploy the Mask-R-CNN benchmark.  

 
 
 

https://gitlab.com/opendatahub/gpu-performance-benchmarks
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Figure 9: Yaml for Mask R-CNN from MLperf Training v0.6.  To view and download all code used in 
this benchmark see https://gitlab.com/opendatahub/gpu-performance-benchmark 

 

 

 
 

https://gitlab.com/opendatahub/gpu-performance-benchmarks
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Solution Benefits  
 Containers provide software portability, improved collaboration, and data reproducibility 

without affecting performance. 
 High-density compute architecture supporting Multi-GPUs accelerators and 100G high 

bandwidth/low latency network to minimize deep learning training time      
 GPUs-accelerate model training by taking advantage of inherent parallelism in Neural 

Networks.  
 OpenShift provides built-in monitoring capability with Prometheus and Grafana and an 

easy-to-use graphical interface, described in the following “Monitoring Environment” 
section. 

 

 

Monitoring Environment 
We used Prometheus and Grafana to collect and display metrics for these experiments.  Both 
Prometheus and Grafana are installed by default with OpenShift 3.11.   We added an NVIDIA 
exporter, to export GPU metrics in Prometheus format.  These GPU metrics were scraped by 
Prometheus and stored in its time series database.  Prometheus is configured as a data source 
for Grafana which displays the metrics in time series format.  We created Grafana dashboards 
to display the metrics we collected.  JSON for the Grafana dashboards shown in Figures 10 
through 12 is available in the open datahub performance gitlab repo.  

 
At a glance this time series view of the GPU metrics allows you to see whether any of the GPUs 
were under-utilized during the model training run. You can click on any of the GPU labels in the 
legend at the bottom of the graph and see only metrics for that GPU. 
 

https://gitlab.com/opendatahub/gpu-performance-benchmarks
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Figure 10:  Monitoring GPU % Usage instant and time series 
 
 
The dashboard in figure 11 monitors GPU memory usage for each GPU.  You can tune your 
application for efficient use of GPU memory using this dashboard.  For instance, when training a 
neural network, you can tune batch size for better utilization of GPU memory and view the 
outcome here.  Batch size is a hyper-parameter that sets the number of training examples per 
iteration.   
 
 

 
 
Figure 11: Monitoring GPU % used and Memory Usage 
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The dashboard in figure 12 monitors GPU temperature and power usage.  You can use 
prometheus alerting to send an email, text, pagerduty or slack message if the temperature of 
one of your GPUs is above some threshold.  
 
 

 

 
Figure 12: Monitoring GPU temperature and power usage   

 
  
        
 

Conclusions and Future Work 
 
In this paper we ran the AI workload MLPerf Training v0.6 to compare the performance of 
Supermicro hardware and Red Hat Enterprise Linux-based containers on OpenShift with 
NVIDIA MLPerf Training v0.6 published results.  We were able to show that the Red Hat 
Enterprise Linux-based containers running on the OpenShift Container Platform and Supermicro 
hardware ran faster for the Mask R-CNN benchmark than NVIDIA’s MLPerf Training v0.6 
results, and only slightly slower (0.5%-6%) for the shorter tests.  Our GNMT timing was 6.13% 
slower which could have been due to the initial random seed used by the benchmark.  Future 
work could include analysis of stability of GNMT for different random seeds.  
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For more information 

 Link to MLPerf Training v0.6 yaml and dockerfiles: https://gitlab.com/opendatahub/gpu-
performance-benchmarks 

 Link to Openshift getting started docs: 
https://www.openshift.com/learn/get-started/ 

 Link to the MLCC tool:  https://github.com/bgray-at-rh/mlcc.git 
 
 
 

 
 
 

  

https://gitlab.com/opendatahub/gpu-performance-benchmarks
https://gitlab.com/opendatahub/gpu-performance-benchmarks
https://www.openshift.com/learn/get-started/
https://github.com/bgray-at-rh/mlcc.git
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APPENDIX 
Installing the GPU device plug-in in OpenShift 
Container Platform 

 
The following instructions were originally developed by Zvonko Kaiser (Red Hat Inc). 

Host Preparation 

NVIDIA drivers for Red Hat Enterprise Linux  must be installed on the host with GPUs as a prerequisite 
for using GPUs with OpenShift.  To prepare the GPU-enabled host we begin by installing NVIDIA 
drivers and the NVIDIA container enablement. The following procedures will make containerized GPU 
workloads possible in OpenShift 3.11. 

Part 1: NVIDIA Driver Installation 

Step 1: NVIDIA drivers are compiled from source.  The build process requires the kernel-devel 
package to be installed.   
 

# yum -y install kernel-devel-`uname -r` 

 
The NVIDIA-driver package requires the DKMS package from EPEL (Extra Package for Enterprise 
Linux). DKMS is not supported or packaged by Red Hat.  Work is underway to remove the NVIDIA 
driver requirement on DKMS for Red Hat distributions.  DKMS can be installed from the Red Hat 
EPEL repository. 
 
Step 2:  Install the EPEL repository. 
 

# yum install -y https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm 

 
Step 3:  Install the NVIDIA drivers. The newest NVIDIA drivers are located in the referenced 
repository. 
 

# yum install -y  https://developer.download.nvidia.com/compute/cuda/repos/rhel7/x86_64/cuda-repo-rhel7-
10.0.130-1.x86_64.rpm 

 
 
Step 4: Install Auxiliary tools and libraries contained in the following packages.  This will also install 
the nvidia-kmod package, which includes the NVIDIA kernel modules. 
 



Red Hat and Supermicro Benchmark 

23 

# yum -y install nvidia-driver nvidia-driver-cuda nvidia-modprobe 

 
 
Step 5:  Remove the nouveau kernel module, (otherwise the NVIDIA kernel module will not load). 
The installation of the NVIDIA driver package will blacklist the driver in the kernel command line 
(nouveau.modeset=0 rd.driver.blacklist=nouveau video=vesa:off ), so that the nouveau driver will not 
be loaded on subsequent reboots. 
 

# modprobe -r nouveau 

 
Step 6: Load the NVIDIA module and the unified memory kernel modules. 
 

# nvidia-modprobe && nvidia-modprobe -u 

 
Step 7:  Verify that the installation and the drivers are working.  Extracting the name of the GPU can 
later be used to label the node in OpenShift. 
 

# nvidia-smi --query-gpu=gpu_name --format=csv,noheader --id=0 | sed -e 's/ /-/g' 
Tesla-V100-SXM2-16GB 

 

Adding the nvidia-container-runtime-hook  

The version of docker shipped by Red Hat includes support for OCI runtime hooks.  Because of this, 
we only need to install the nvidia-container-runtime-hook package. On other distributions of docker, 
additional steps may be necessary.  See NVIDIA’s documentation for more information. 
 
Step 1:  install libnvidia-container and the nvidia-container-runtime repositories. 
 

# curl -s -L https://nvidia.github.io/nvidia-container-runtime/centos7/nvidia-container-runtime.repo | tee 
/etc/yum.repos.d/nvidia-container-runtime.repo 

 
Step 2:  install an OCI prestart hook.  The prestart hook is responsible for making NVIDIA libraries 
and binaries available in a container (by bind-mounting them in from the host).  Without the hook, 
users would have to include libraries and binaries into each and every container image that might use 
a GPU.  Hooks simplify management of container images by ensuring only a single copy of libraries 
and binaries are required.  The prestart hook is triggered by the presence of certain environment 
variables in the container: NVIDIA_DRIVER_CAPABILITES=compute,utility. 
 

# yum -y install nvidia-container-runtime-hook 

 

https://github.com/opencontainers/runtime-spec/blob/master/config.md#prestart
http://www.nvidia.com/object/docker-container.html
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This package will install also the config/activation files for docker/podman/cri-o. Beware that the 
hook json in the package will only work with cri-o >= 1.12 for crio-1.11 use the following json file: 
 

# cat <<'EOF' >> /usr/share/containers/oci/hooks.d/oci-nvidia-hook.json 
{ 

   "hasbindmounts": true, 
   "hook": "/usr/bin/nvidia-container-runtime-hook", 
   "stage": [ "prestart" ] 
} 
EOF 

 
 

Adding the SELinux policy module 

To run NVIDIA containers contained and not privileged, we have to install an SELinux policy 
tailored for running CUDA GPU workloads. The policy creates a new SELinux type 
(nvidia_container_t)  with which the container will be running.   
 
Furthermore, we can drop all capabilities and prevent privilege escalation. See the invocation below 
to have a glimpse into how to start a NVIDIA container.  
 
Next, install the SELinux policy module on all GPU worker nodes. 
 

# wget https://raw.githubusercontent.com/zvonkok/origin-ci-gpu/master/selinux/nvidia-container.pp  
 
# semodule -i nvidia-container.pp 

 
 

 

Check and restore the labels on the node 

The new SELinux policy heavily relies on the correct labeling of the host. Therefore, we must make 
sure that the required files have the correct SELinux label.  
 
Step 1:  Restorecon all files that the prestart hook will need. 
 

# nvidia-container-cli -k list | restorecon -v -f - 

 
Step 2:  Restorecon all accessed devices. 
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# restorecon -Rv /dev 

 
 
Step 3:  Restorecon all files that the device plugin will need. 
 

# restorecon -Rv /var/lib/kubelet 

    
Everything is now set up for running a GPU-enabled container. 

Verify SELinux and prestart hook functionality 

To verify correct operation of driver and container enablement, try running a cuda-vector-add 
container.  We can run the container with docker or podman.  
 

# podman run  --user 1000:1000 --security-opt=no-new-privileges --cap-drop=ALL \  
              --security-opt label=type:nvidia_container_t    \ 
  docker.io/mirrorgooglecontainers/cuda-vector-add:v0.1 

 

# docker run  --user 1000:1000 --security-opt=no-new-privileges --cap-drop=ALL \  
              --security-opt label=type:nvidia_container_t    \ 
  docker.io/mirrorgooglecontainers/cuda-vector-add:v0.1 

 

If the test passes, the drivers, hooks and the container runtime are functioning correctly and we can 
move on to configuring OpenShift. 

 

Part 2: OpenShift 3.11 with the GPU Device Plugin 

Install the NVIDIA  device plugin.  To schedule the device plugin on nodes that include GPUs, label 
the node as follows: 
 

# oc label node <node-with-gpu> openshift.com/gpu-accelerator=true 
node "<node-with-gpu>" labeled 

 
This label will be used in the next step. 

Deploy the NVIDIA Device Plugin Daemonset 

The next step is to deploy the NVIDIA device plugin  Note that the NVIDIA Device Plugin (and 
more generally, any hardware manufacturer’s plugin) is supported by the vendor, and is not shipped 
or supported by Red Hat.  
 

https://github.com/NVIDIA/k8s-device-plugin
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Clone the following repository; there are several yaml files for future use. 
 

# git clone https://github.com/redhat-performance/openshift-psap.git 
# cd openshift-psap/blog/gpu/device-plugin 

 
 
Here is an example daemonset (device-plugin/nvidia-device-plugin.yml) which will use the label we 
created in the last step so that the plugin pods will only run where GPU hardware is available. 
 
Now create the NVIDIA device plugin daemonset. 
 

# oc create -f nvidia-device-plugin.yml 

 
Let’s verify the correct execution of the device plugin.  You can see there is only one running since 
only one node was labeled in the previous step. 
 

# oc get pods -n kube-system 
NAME                                   READY     STATUS     RESTARTS   AGE 
nvidia-device-plugin-daemonset-s9ngg   1/1       Running    0          1m 

 
 
 
 
 
 
Once the pod is running, let’s have a look at the logs. 
 

# oc logs nvidia-device-plugin-daemonset-7tvb6 -n kube-system 
2018/07/12 12:29:38 Loading NVML 
2018/07/12 12:29:38 Fetching devices. 
2018/07/12 12:29:38 Starting FS watcher. 
2018/07/12 12:29:38 Starting OS watcher. 
2018/07/12 12:29:38 Starting to serve on /var/lib/kubelet/device-plugins/nvidia.sock 
2018/07/12 12:29:38 Registered device plugin with Kubelet 

 
At this point the node itself will advertise the nvidia.com/gpu extended resource in its capacity: 
 

# oc describe node <gpu-node> | egrep 'Capacity|Allocatable|gpu' 
 
Capacity: 
 nvidia.com/gpu:  2 
Allocatable: 
 nvidia.com/gpu:  2 

 

https://github.com/redhat-performance/openshift-psap.git
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#extended-resources
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Nodes that do not have GPUs installed will not advertise GPU capacity. 
 
Deploy a pod that requires a GPU 

Let’s run a GPU-enabled container on the cluster.  We can use the cuda-vector-add image that was 
used in the host preparation step. Use the following file (device-plugin/cuda-vector-add.yaml)  as a 
pod description for running the cuda-vector-add image in OpenShift. Note the last line requests one 
NVIDIA GPU from OpenShift.  The OpenShift scheduler will see this and schedule the pod to a node 
that has a free GPU.  Once the pod-create request arrives at a node, the Kubelet will coordinate with 
the device plugin to start the pod with a GPU resource. 
 
First create a project that will group all of our GPU work. 
 

# oc new-project nvidia 

 
The next step is to create and start the pod.  
 

# oc create -f cuda-vector-add.yaml 

 
 
 
 
After a couple of seconds, the container finishes. 
 

# oc get pods 
NAME                                   READY     STATUS           RESTARTS   AGE 
cuda-vector-add                        0/1       Completed        0          3s 
nvidia-device-plugin-daemonset-s9ngg   1/1       Running          0          9m 

 
Check the logs for any errors.  We are looking for Test PASSED in the pod logs. 
 

# oc logs cuda-vector-add 
[Vector addition of 50000 elements] 
Copy input data from the host memory to the CUDA device 
CUDA kernel launch with 196 blocks of 256 threads 
Copy output data from the CUDA device to the host memory 
Test PASSED 
Done 

 
This output is the same as when we ran the container directly using podman or docker. If you see a 
permission denied error, check to see that you have the correct SELinux label. 
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